Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression.

نویسندگان

  • Seung-Jae Lee
  • Coleen T Murphy
  • Cynthia Kenyon
چکیده

Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on life span itself. We found that adding a small amount of glucose to the medium (2%) shortened the life span of C. elegans by inhibiting the activities of life span-extending transcription factors that are also inhibited by insulin signaling: the FOXO family member DAF-16 and the heat shock factor HSF-1. This effect involved the downregulation of an aquaporin glycerol channel, aqp-1. We show that changes in glycerol metabolism are likely to underlie the life span-shortening effect of glucose and that aqp-1 may act cell nonautonomously as a feedback regulator in the insulin/IGF-1-signaling pathway. Insulin downregulates similar glycerol channels in mammals, suggesting that this glucose-responsive pathway might be conserved evolutionarily. Together, these findings raise the possibility that a low-sugar diet might have beneficial effects on life span in higher organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans

FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an...

متن کامل

TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO.

The TOR kinase, which is present in the functionally distinct complexes TORC1 and TORC2, is essential for growth but associated with disease and aging. Elucidation of how TOR influences life span will identify mechanisms of fundamental importance in aging and TOR functions. Here we show that when TORC1 is inhibited genetically in C. elegans, SKN-1/Nrf, and DAF-16/FoxO activate protective genes,...

متن کامل

Genome-wide endogenous DAF-16/FOXO recruitment dynamics during lowered insulin signalling in C. elegans

Lowering insulin-IGF-1-like signalling (IIS) activates FOXO transcription factors (TF) to extend life span across species. To study the dynamics of FOXO chromatin occupancy under this condition in C. elegans, we report the first recruitment profile of endogenous DAF-16 and show that the response is conserved. DAF-16 predominantly acts as a transcriptional activator and binding within the 0.5 kb...

متن کامل

Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan

BACKGROUND Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 ha...

متن کامل

The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans

In Caenorhabditis elegans, reduction of insulin/IGF-1 like signaling and loss of germline stem cells both increase lifespan by activating the conserved transcription factor DAF-16 (FOXO). While the mechanisms that regulate DAF-16 nuclear localization in response to insulin/IGF-1 like signaling are well characterized, the molecular pathways that act in parallel to regulate DAF-16 transcriptional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell metabolism

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2009